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Abstract— A function f : D → R has Lipschitz constant
c if dR(f(x), f(y)) ≤ c·dD(x, y) for all x, y in D, where dR
and dD denote the distance metrics on the range and domain
of f , respectively. We say a function is Lipschitz if it has
Lipschitz constant 1. (Note that rescaling by a factor of 1/c
converts a function with a Lipschitz constant c into a Lipschitz
function.) Intuitively, a Lipschitz constant of f is a bound on
how sensitive f is to small changes in its input.

We initiate the study of testing and local reconstruction of
the Lipschitz property of functions. A property tester, given
a parameter ε, has to distinguish functions with the property
(in this case, Lipschitz) from functions that are ε-far from
having the property, that is, differ from every function with
the property on at least an ε fraction of the domain. A local
filter reconstructs a desired property (in this case, Lipschitz)
in the following sense: given an arbitrary function f and a
query x, it returns g(x), where the resulting function g satisfies
the property, changing f only when necessary. If f has the
property, g must be equal to f .

We consider functions over domains of the form
{1, . . . , n}d, equipped with �1 distance. We design efficient
testers of the Lipschitz property for functions of the form
f : {1, 2}d → δZ, where δ ∈ (0, 1] and δZ is the set of
integer multiples of δ, and of the form f : {1, . . . , n} → R,
where R is (discretely) metrically convex. We also present an
efficient local filter of the Lipschitz property for functions of
the form f : {1, . . . , n}d → R. We give corresponding lower
bounds on the complexity of testing and local reconstruction.

The algorithms we design have applications to program
analysis and data privacy. The application to privacy is based
on the fact that a function f of entries in a database of
sensitive information can be released with noise of magnitude
proportional to a Lipschitz constant of f , while preserving
the privacy of individuals whose data is stored in the database
(Dwork, McSherry, Nissim and S mith, TCC 2006). We give
a differentially private mechanism, based on local filters, for
releasing a function f when a purported Lipschitz constant of
f is provided by a distrusted client. We show that when no
reliable Lipschitz constant of f is given, previously known
differentially private mechanisms have either a substantially
higher running time or a higher expected error, for a large
class of symmetric functions f .
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1. INTRODUCTION

Consider a function f : D → R mapping a metric

space (D, dD) to a metric space (R, dR), where dD and

dR denote the distance functions on the domain D and

range R, respectively. Function f has Lipschitz constant
c if dR(f(x), f(y)) ≤ c ·dD(x, y) for all x, y in D. We

call such a function c-Lipschitz and say a function is

Lipschitz if it is 1-Lipschitz. (Note that rescaling by

a factor of 1
c converts a c-Lipschitz function into a

Lipschitz function.) Intuitively, a Lipschitz constant of

f is a bound on how sensitive f is to small changes in

its input.

Lipschitz continuity1 is a fundamental notion in math-

ematical analysis, the theory of differential equations

and other areas of mathematics and computer science.

A Lipschitz constant c of a given function f is used,

for example, in probability theory in order to obtain tail

bounds via McDiarmid’s inequality [16]; in program

analysis, it is considered as a measure of robustness

to noise [7]; in data privacy, it is used to scale noise

added to output f(x) to preserve differential privacy

of a database x [11]. In these three examples, one

often needs to compute a Lipschitz constant of a given

function f or, at least, verify that f is c-Lipschitz for

a given number c. However, in general, computing a

Lipschitz constant is computationally infeasible. The

decision version is undecidable when f is specified by

a Turing machine that computes it, and NP-hard if f
is specified by a circuit. In this work, we focus on

Lipschitz continuity of functions over finite domains,

for which the NP-hardness statement still holds.

We initiate the study of testing if a function (over

a finite domain) is Lipschitz, which is a relaxation

of the decision problem described above. A property

tester [19], [13] is given oracle access to an object

1A function is called Lipschitz continuous if there is a constant c
for which it is c-Lipschitz.



(in this case, a function f ) and a proximity parameter

ε. It has to distinguish functions with the property

(in this case, Lipschitz) from functions that are ε-far

from having the property, that is, differ from every

function with the property on at least an ε fraction

of the domain. Intuitively, a tester for the Lipschitz

property of functions provides an approximate answer

to the decision problem of determining if a function

is Lipschitz and is useful in some situations when

obtaining an exact answer is computationally infeasible.

We also study local reconstruction of the Lipschitz

property of functions over finite domains. This is useful

in applications (in particular, to data privacy) where

merely testing is not sufficient, and one needs to be able

to enforce the Lipschitz property. Property-preserving

data reconstruction [1] is beneficial when an algorithm,

call it A, is computing on a large dataset and the

algorithm’s correctness is contingent upon the dataset

satisfying a certain structural property. For example, A
may require that its input array be sorted or, in our

case, its input function be Lipschitz. In such situations,

A could access its input via a filter that ensures that

data seen by A always satisfy the desired property,

modifying it at few places on the fly, if required.

Suppose that A’s input is represented by a function f .

Then whenever A wants to access f(x), it makes query

x to the filter. The filter looks up the value of f on

a small number of points and returns g(x), where g
satisfies the desired property (in our case, is Lipschitz).

See Figure 1. Thus, A is computing with reconstructed

data g instead of its original input f .

Local reconstruction [20] imposes an additional re-

quirement to allow for parallel or distributed imple-

mentation of filters: the output function g must be

independent of the order of the queries x to the filter.

The version of local reconstruction we consider (see

Definition 2.1), defined in [3], further requires that if the

original input has the property, it should not be modified

by the filter, i.e., if f has the property, g must be equal

to f . Our application to data privacy has an unusual

feature, not encountered in previous applications of

filters: algorithm A needs to access its input only at

one point x (corresponding to the database its holding).

Nevertheless, we require local filters, not because of the

distributed aspect they were initially developed for, but

because when g depends on x, it might leak information

about x and violate privacy.

Previous work on property testing and reconstruction:
Property testing [13], [19] is a well-studied notion of ap-

proximation for decision problems. Properties of a wide

variety of structures, including graphs, error-correcting

codes, geometric sets, probability distributions, images

and Boolean functions, have been investigated in this

context, most of which are not directly related to the

problems we consider here. A notable exception is work

on testing monotonicity of functions, first considered

in [12] (see, e.g., [4] and references therein), which has

provided several techniques that are surprisingly useful

for testing the Lipschitz property. We give relevant

pointers for each of our results in Section 1.1. A unified

discussion can be found in the full version of this paper.

Property preserving reconstruction [1] has been stud-

ied for monotonicity of functions [1], [20], [3], con-

vexity of points [8], graph expansion [15] and error-

correcting codes [6]. The local model is addressed

in [20], [6], [3], with only [20] providing local filters,

and the other two papers focusing on lower bounds.

Results on filters for properties other than monotonicity

of functions do not seem directly relevant to our work.

1.1. Our Results and Techniques

We study testing and local reconstruction of Lips-

chitz functions over discrete metric spaces. Standard

notions from property testing and reconstruction are

introduced in Section 2. Throughout the paper, we use

[n] to denote {1, . . . , n}. We represent each domain

by a graph G equipped with the shortest path distance

dG. Specifically, we consider functions over domains

{0, 1}d, [n] and [n]d, equipped with �1 distance. We

refer to the domains of our functions by specifying the

underlying graph that captures the distances between

points in the domain. Specifically, {0, 1}d is referred to

as the hypercube Hd, [n] as the line Ln and [n]d as

the hypergrid Hn,d. The hypergrid Hn,d has vertex set

[n]d and edge set {{x, y} : ∃ unique i ∈ [d] such that

|yi − xi| = 1 and for j �= i, yj = xj}. The line and

the hypercube are the special cases of the hypergrid for

d = 1 and n = 2, respectively, with vertices of the

hypercube renumbered as {0, 1}d instead of {1, 2}d.

Testing the Lipschitz property on the hypercube:
We design efficient testers of the Lipschitz property for

functions over the hypercube Hd and the line Ln and

prove corresponding lower bounds.

The following theorem, proved in Section 3, gives

our main technical result: a tester for the Lipschitz

property of functions of the form f : Hd → δZ, where

δ ∈ (0, 1] and δZ is the set of integer multiples of δ.

Its performance is better when a small upper bound on

the image diameter of the input function is known. The

image diameter of f : D → R, denoted ImD(f), is

maxx∈D f(x)−minx∈D f(x).



Theorem 1.1 (Lipschitz tester for hypercube). The
Lipschitz property of functions f : Hd → δZ can
be tested nonadaptively and with one-sided error in
O

(
d·min{d,ImD(f)}

δε

)
time for all δ ∈ (0, 1].

For instance, if the range of f is {0, 1, 2} then the tester

runs in O(d/ε) time.

The tester first samples random points and checks

if the image of the input function f , restricted to

the samples, has appropriately small diameter for a

Lipschitz function over Hd – namely, at most d. If f
passes this test then it checks if the Lipschitz condition

is satisfied for uniformly random edges of Hd and

rejects if it finds a violation. To analyze the tester,

we relate (in Lemma 3.1) the number of edges of Hd

that are violated by a function to its distance to the

Lipschitz property. The main tool in the analysis is

the averaging operator, which we use to restore the

Lipschitz property one dimension at a time. We build

on ideas from [12], [10] which restored monotonicity

one dimension at a time to analyze monotonicity tests

for Boolean functions. Our averaging operator modifies

values of f on the endpoints of each violated edge in

a given dimension, bringing the two values sufficiently

close. It can be thought of as computing an average

of the values on the endpoints (however, one must be

careful about how rounding to the nearest value in the

range is done in order for our technique to work). One

of the difficulties we overcome in the analysis is that

the averaging operator might increase the number of

violated edges in the previously restored dimensions.

We introduce a potential function, called a violation
score, that takes into account not only the number of

violations, but also their magnitude. We prove that ap-

plying the averaging operator along one dimension does

not increase the violation score in other dimensions. The

main idea behind the proof is to break down the action

of the averaging operator into small steps, captured

by the basic operator which brings the endpoints of

violated edges in a given dimension closer to each other

by a small increment δ, and prove the desired statement

for the basic operator.

The analysis of the tester in the proof of Theorem 1.1

does not apply directly to real-valued functions. By

discretizing function values, in the full version, we

obtain the following corollary for such functions.

Corollary 1.2. There is an algorithm that gets param-
eters δ ∈ (0, 1], ε ∈ (0, 1), d and oracle access to a
function f : Hd → R; it accepts if f is Lipschitz, rejects
with probability at least 2/3 if f is ε-far from (1 + δ)-
Lipschitz and runs in O

(
d·min{d,ImD(f)}

δε

)
time.

We also give a lower bound on the query complexity

of the tester for the hypercube which matches the upper

bound in Theorem 1.1 for the case of the {0, 1, 2} range

and constant ε.

Theorem 1.3. An (adaptive, two-sided error) tester of
the Lipschitz property of functions f : Hd → Z must
make Ω(d) queries. This holds even if the range of f is
{0, 1, 2}.

We prove Theorem 1.3 in the full version of this

paper. We use the method presented in [5] of reducing

a suitable communication complexity problem to the

testing problem. [5] uses this method to prove (amongst

other results) an Ω(d) lower bound for testing mono-

tonicity of functions on {0, 1}d with a range of size

Ω(
√
d). Our lower bound for the Lipschitz property

holds even for functions with a range of size 3.
Testing the Lipschitz property on the line: Next

we give an efficient tester for the class of function

properties which, in our terminology, are edge-transitive
and allow extension. (Refer to the full version of this

paper for the definition and discussion.) The Lipschitz

property for functions on f : Ln → R belongs to this

class for most ranges R of interest. We characterize such

ranges R as discretely metrically convex metric spaces.

Metric convexity is a standard notion in geometric

functional analysis (see, e.g., [2]). We define the discrete

version, which is a weakening of the original notion in

the following sense: all metrically convex spaces are

also discretely metrically convex.

Definition 1.1 (Definition 1.3 of [2] and its relaxation).
A metric space (R, dR) is metrically convex (resp.,
discretely metrically convex) if for all points u, v ∈ R
and positive real numbers (resp., positive integers) α
and β satisfying dR(u, v) ≤ α+ β, there exists w ∈ R
such that dR(u,w) ≤ α and dR(w, v) ≤ β.

Our efficient tester for edge-transitive properties that

allow extension, presented in the full version of this

paper, builds on ideas from [4]. Specifically, for the

Lipschitz property of functions f : Ln → R, it implies

the following corollary.

Corollary 1.4. The Lipschitz property of functions f :
Ln → R for every discretely metrically convex space R
can be tested in time O

(
logn
ε

)
. In particular, the bound

applies to the following metric spaces R: (Rk, �p) for
all p ∈ [1,∞), (Rk, �∞), (Zk, �1), (Zk, �∞) and the
shortest path metric dG on all graphs G.

The following theorem, proved in the full version of

this paper, shows that the upper bound of Corollary 1.4

is tight for nonadaptive one-sided error testers. Even



though it is stated for range R for concreteness, it

trivially applies to Z
k and R

k for all k and metrics

discussed above. (Note that it does not—and should

not—apply to the shortest path metric on arbitrary

graphs.)

Theorem 1.5. A nonadaptive one-sided error tester of
the Lipschitz property of functions f : Ln → R must
make Ω(log n) queries.

To prove Theorem 1.5, we construct a family of

Ω(log n) functions which are 1/4-far from Lipschitz

and have pairwise disjoint sets of violated pairs. The

construction has a clean description in terms of the

discrete derivative function Δf , defined by f(x) =∑
y∈[x] Δf(y) for all x ∈ [n].
Reconstruction of the Lipschitz property: We present

a local filter of the Lipschitz property for functions

of the form f : [n]d → R with lookup complexity

O((log n + 1)d). This result is stated in Theorem 1.6,

which is proved in Section 4.

Theorem 1.6 (Local Lipschitz filters for Hypergrid).
There is a deterministic nonadaptive local Lipschitz
filter for functions f : [n]d → R with running time
(and the number of lookups) O((log n+1)d) per query.

We abstract the combinatorial object used in this filter

as a lookup graph consistent with the domain graph.

We show that the existence of a lookup graph implies

a local Lipschitz filter where the lookup complexity of

the filter is the maximum outdegree of a node in the

lookup graph. We then obtain a lookup graph for [n]
with outdegree bounded by O(log n). Our construction

builds on ideas of Ailon et al. [1] who gave a local

monotonicity filter for functions f : [n]→ R. We obtain

a lookup graph for the hypergrid Hn,d by constructing

a strong product of the lookup graphs for the line.

For functions of the form {0, 1}d → R, we show that

every nonadaptive reconstructor has lookup complexity

exponential in d. The statement and the proof of the

lower bound appear in full version of this paper. The

main tool in the analysis is graph spanners, which

were also used in [3] to prove lower bounds on local

monotonicity reconstructors.

1.2. Applications

Our testers have applications to program analysis.

Our filters have applications to data privacy.

Program Analysis: Certifying that a program com-

putes a Lipschitz function has been studied in [7].

Applications described there include ensuring that a

program is robust to noise in its inputs and ensuring

that a program responds well to compiler optimizations

that lead to an approximately equivalent program. For

example, a Lipschitz function is guaranteed to respond

proportionally to changes in input data (e.g., sensor

measurements) due to rounding or other kinds of errors.

The methodology presented in [7] relies on inspecting

the code of the program to verify that it computes

a Lipschitz function. Their method might work for a

particular program, but not apply to another function-

ally equivalent program with more complicated syntax.

Efficient testers of the Lipschitz property allow one to

approximately check if a program computes a Lipschitz

function, while treating the program as a black box,

without any syntactical restrictions. The only restriction

we impose is on the domain and the range of the

function computed by the program, since our tests are

tailored to the domain and the range.

Data Privacy: The challenge in private data analysis

is to release global statistics about the database while

protecting the privacy of individual contributors. The

database x can be modeled as a multiset (or a vector)

over some domain U , where each element (resp., entry)

xi ∈ U represents information contributed by one indi-

vidual. One of main questions addressed in this area is:

what information about x that does not heavily depend

on individual entries xi can we compute (and release)

efficiently? There is a vast body of work on this problem

in statistics and computer science, with [9] pioneering

a line of work in cryptography. Subsequently, [11]

defined a rigorous notion of privacy, called differen-
tial privacy (reviewed in Defition 5.1), and described

the Laplace mechanism (reviewed in Theorem 5.1)

for achieving differential privacy for releasing a given

function f of the database x. The method is based

on adding random noise from the Laplace distribution

to f(x), where the magnitude of the noise, i.e., the

scale parameter of the distribution, is proportional to

a Lipschitz constant of the function f .

Two major systems that release data while satisfy-

ing differential privacy have been implemented, both

based on the Laplace mechanism. Both allow releasing

functions of the database of the form f : x → R. In

both implementations, the client sends a program to

the server, requesting to evaluate it on the database,

and receives the output of the program with Laplace

noise added to it. However, the client is not trusted

to provide a function with a low Lipschitz constant.

The first approach relies on a language-based solution

PINQ [17]. It imposes strict restrictions on the syntax

of the programs that may be sent to the server holding

the database, ensuring that programs evaluate Lipschitz

functions. The second approach, taken in [18], allows



Figure 1. A filter Figure 2. Use of a Lipschitz filter in private data analysis

for arbitrary programs. The privacy guarantee is ensured

by enforcing that the program’s output is always within

its prespecified range. The range of the program must

be declared and is used as a Lipschitz constant. Note

that the range of a function can be much larger than

its least Lipschitz constant. Therefore, the resulting

mechanism may add overwhelming noise and destroy

the information even when the function value could have

been released privately with little noise.

The difficulty is that when f (supplied by a distrusted

client) is given as a general-purpose program, it is hard

to compute its least Lipschitz constant, or even an upper

bound on it. Suppose we ask the client to supply a

constant c such that f is c-Lipschitz. Unfortunately,

as mentioned before, it is undecidable to even verify

whether a function computed by a given Turing machine

is c-Lipschitz for a fixed constant c. Applying the

Laplace mechanism with c smaller than a Lipschitz

constant (if the client is lying) would result in a privacy

breach, while applying it with a generic upper bound

on the least Lipschitz constant of f would result in

overwhelming noise.

In Section 5.1, we describe and analyze a different

solution, which we call the filter mechanism, that can be

used to release a function f when a Lipschitz constant

of f is provided by a distrusted client. (See Figure 2.)

The filter mechanism is differentially private and adds

the same amount of noise as the Laplace mechanism

for an honest client. Instead of directly running a

program f , provided by the client, on the database

x, the server calls a local Lipschitz filter on query x
with f as an oracle. The filter outputs g(x) instead of

f(x), where g is Lipschitz2. Crucially, since the filter

is local, it guarantees that g does not depend on the

2If one needs to ensure that a function is c-Lipschitz, the function
can be rescaled.

database x. That is, the client could have computed g by

herself, based on f . Consequently, releasing g(x) via the

Laplace mechanism is differentially private. Moreover,

if the client is honest and provides a program that

computes a Lipschitz function f , the output function

g of the filter is identical to f . In this case, the noise

added to the answer is identical to that of the Laplace

mechanism3.

Let Lap(λ) denote the Laplace distribution on R with

the scale parameter λ. Its density function is fλ(y) =
1
2λe

− |y|λ . The following theorem, proved in Section 5.1,

summarizes the performance of the filter mechanism.

Theorem 1.7 (Filter Mechanism). Fix c, ε > 0. Let A
be a local Lipschitz filter of functions f : D → R

t

where the Lipschitz property is with respect to (D, dD).
For all functions f : D → R

t, the following algorithm
(which receives f as an oracle) is ε-differentially pri-
vate: Af

Fil(x) = c · A( 1c · f, x) + (Y1, . . . , Yt), where

Yi
i.i.d.∼ Lap(c/ε) for all i ∈ [t].
Moreover, for all c-Lipschitz functions f , the outputs

of the filter and Laplace mechanisms are identical with
probability at least 1−δ, where δ is the error probability
of the local filter.

In Section 5.2, we instantiate the filter mechanism

with our filter from Theorem 1.6 to obtain an efficient

private algorithm for releasing functions f : x → R of

the databases x which can be represented as multisets

and for which an upper bound on the multiplicity of

3We do not insist that f and g differ only on a small number of
points, since we call our filter only on one database x. If we did, a
dishonest client would be penalized for fewer instances of x. Observe
that the amount of distortion reconstruction introduces by substituting
f(x) with g(x) does not depend on the distance of f to the Lipschitz
property: it could be Lipschitz everywhere, besides x, but f(x) would
be changed anyway. However, it is not hard to see that our filter never
changes f(x) by more than maxy {|f(y)− f(x)|+ dG(x, y)} .



all elements of the universe U is known. (Note that the

number of people in databases is a trivial upper bound.)

When the client provides a correct Lipschitz constant,

the resulting filter mechanism has the same expected

error as the Laplace mechanism. Our mechanism is

differentially private even for dishonest clients.

We show that when no reliable Lipschitz constant

of f is given, previously known differentially private

mechanisms (specifically, those based on the Laplace

mechanism) either have a substantially higher running

time (because they verify the Lipschitz constant by brute

force) or have a higher expected error for a large class of

functions f . Specifically, suppose that U has size k, that

is, the individuals can have one of k types, and consider

functions f that compute the number of individuals of

types S ⊆ [k] for |S| = Ω(k). We show that the noisy
histogram approach (based on the Laplace mechanism)

incurs an expected Ω(
√
k) error in answering the query.

In contrast, our filter mechanism has expected error

O(1/ε) while preserving differential privacy even in the

presence of distrusted clients. The following theorem,

proved in the full version, summarizes the comparison

of the filter mechanism to the noisy histogram approach.

Theorem 1.8. For some functions f , releasing f results
in expected error Ω(

√
k/ε) with the noisy histogram

approach, but only O(1/ε) with the filter mechanism.

2. PRELIMINARIES

Testing Properties of functions: Given functions f, g
on the same domain D, the distance between f and

g, denoted Dist(f, g), is the number of points in D
on which f and g differ. We say f is ε-far from a

property P if Dist(f, g) ≥ ε · |D| for all functions

g satisfying P . A (two-sided error, adaptive) q-query
tester for a property P is a randomized algorithm, which

given oracle access to a function f and a parameter

ε ∈ (0, 1) makes at most q queries to the oracle f and

can distinguish, with probability 2/3, the case that f
satisfies P from the case that f is ε-far from P . A

tester has one-sided error if it always accepts functions

satisfying P . It is nonadaptive if the queries to f do

not depend on the answers to the previous queries.

Local Property Reconstruction: Local reconstruction

was defined in [20]. The variant we consider is from [3].

Definition 2.1 (Local filter). A local filter for recon-
structing property P is an algorithm A that has oracle
access to a function f : D → R and to an auxiliary
random string ρ (the “random seed”), and takes as
input x ∈ D. For fixed f and ρ, A runs deterministically
on input x to produce an output Af,ρ(x) ∈ R. The
function g(x) = Af,ρ(x) output by the filter must satisfy

P for all f and ρ. In addition, if f satisfies P then g
must be identical to f with probability at least 1−δ for
some error probability δ ≤ 1/3, where the probability
is taken over ρ.

When answering a query x ∈ D, a filter may access

values of f at domain points of its choice using its

oracle. Each accessed domain point is called a lookup
to distinguish it from the client query x. A local filter

is nonadaptive if its lookups on input query x do not

depend on answers given by the oracle.

3. TESTING THE LIPSCHITZ PROPERTY

In this section, we show how to test if a function

f : Hd → δZ is Lipschitz and explain the main ideas

from the proof of Theorem 1.1.
W.l.o.g., we assume that that 1/δ is an integer.
Observe that a function is Lipschitz if its values on

the endpoints of every edge differ by at most 1. An

edge {x, y} is violated if |f(x)− f(y)| > 1. Since Hd

has diameter d, no values in the image of a Lipschitz

function should differ by more than d.

Definition 3.1 (Image diameter). The image diameter

of a function f : D → R, denoted ImD(f), is
the difference between the maximum and the minimum
values attained by f , i.e., max

x∈D
f(x)−min

x∈D
f(x).

First, our algorithm approximates the image diameter

of the input function f by computing the image diameter

of f , restricted to random samples, and rejects if it is

greater than d. Then it looks for violations by sampling

hypercube edges uniformly at random.

LIPSCHITZ-TEST(f : {0, 1}d → δZ, d, δ, ε)

1 Select t = �12/ε
 vertices z1, . . . , zt uniformly and

independently at random from the hypercube Hd.

2 Let r = maxti=1 f(zi)−minti=1 f(zi).
3 if r > d, reject.

4 Select �(2 · dr)/δε
 edges uniformly and

independently at random from the hypercube Hd.

5 if any of the selected edges are violated, reject;

otherwise, accept.

The main tool in the analysis of our test is

Lemma 3.1, proved in Sections 3.1–3.2. In the full

version, we derive Theorem 1.1 from this lemma.

Lemma 3.1 (Main). Let function f : {0, 1}d → δZ
be ε-far from Lipschitz. Let V (f) denote the number of
edges of Hd violated by f . Then V (f) ≥ δε·2d−1

ImD(f) .

3.1. Averaging Operator Ai

To prove Lemma 3.1, we show how to transform an

arbitrary function f : {0, 1}d → δZ into a Lipschitz



function by changing f on a set of points, whose size

is related to the number of the hypercube edges violated

by f . This is achieved by repairing one dimension of the

hypercube Hd at a time with the averaging operator Ai,

defined below. The operator modifies values of f on the

endpoints of each violated edge in dimension i, bringing

the two values sufficiently close. It can be thought of

as computing an average of the values on the endpoints

and rounding it down and up to the closest values in δZ
to obtain new assignments for the endpoints. Let �x�δ
(resp., �x
δ) be the smallest (resp., largest) value in δZ
not greater (resp., not smaller) than x.

Definition 3.2 (Averaging operator Ai). Given f :
{0, 1}d → δZ, for each violated edge {x, y} along
dimension i, where vertex names x and y are cho-
sen so that f(x) < f(y) − 1, define Ai[f ](x) =⌊
f(x)+f(y)

2

⌋
δ

and Ai[f ](y) =
⌈
f(x)+f(y)

2

⌉
δ
.

We would like to argue that while we are repairing

dimension i with the averaging operator, other dimen-

sions are not getting worse. Unfortunately, the number

of violated edges along other dimensions can increase.

Instead, we keep track of our progress by looking at a

different measure, called the violation score.

Definition 3.3 (Violation score). The violation score

of an edge {x, y} with respect to function f , denoted
vs({x, y}), is max(0, |f(x)− f(y)| − 1). The violation

score of dimension i, denoted V Si(f), is the sum of
violation scores of all edges along dimension i.

The violation score of an edge is positive iff the edge

is violated. Moreover, the violation score of a violated

edge with respect to a δZ-valued function is contained

in the interval [δ, ImD(f)]. Let V i(f) be the number

of edges along dimension i violated by f . Then

δV i(f) ≤ V Si(f) ≤ V i(f) · ImD(f). (1)

Later, we use (1) to bound the number of values

of f modified by Ai in terms of V i(f). Next lemma

shows that Ai does not increase the violation score in

dimensions other than i.

Lemma 3.2. For all i, j ∈ [d], where i �= j, and every
function f : {0, 1}d → δZ, applying the averaging

operator Ai does not increase the violation score in
dimension j, i.e., V Sj(Ai[f ]) ≤ V Sj(f).

Proof. The main idea behind the proof is to break down

the action of the averaging operator Ai into small steps

and prove that each step along dimension i does not

increase the violation score in dimension j. Each small

step is captured by the basic operator Bi, defined next.

Definition 3.4 (Basic operator Bi). Given f :
{0, 1}d → δZ, for each violated edge {x, y} along
dimension i, where vertex names x and y are chosen
so that f(x) < f(y) − 1, define Bi[f ](x) = f(x) + δ
and Bi[f ](y) = f(y)− δ.

It is easy to see that applying Ai is equivalent to apply-

ing Bi multiple times until no edges along dimension i
are violated. Therefore, it is enough prove Lemma 3.2

for Bi instead of Ai.

Note that the edges along dimensions i and j form

disjoint squares in the hypercube. Therefore, the special

case of Lemma 3.2 for f restricted to each of these

squares individually (where each such restriction is a

two-dimensional function) allows us to prove the lemma

for dimensions i and j by summing the inequalities over

all such squares. It remains to prove the lemma for d =
2 and Bi instead of Ai.

Note that we may assume w.l.o.g. that 1/δ is an

integer. This is because f is Lipschitz iff f/δ is 1/δ-

Lipschitz. Since f/δ is an integer-valued function, it is

1/δ-Lipschitz iff it is �1/δ�-Lipschitz. Let c = �1/δ�
and f ′ = f/(δ·c). Then f ′ is Lipschitz iff f is Lipschitz.

Therefore, testing if f : Hd → δZ is Lipschitz is

equivalent to testing if f ′ : Hd → (1/c)Z is Lipschitz

for the integer c defined above. yt

ybxb

xt

i
jConsider a two-dimensional

function f : {xt, xb, yt, yb} →
δZ with vertices xt, xb, yt, yb
positioned as depicted. We show that an application of

the basic operator Bi along the horizontal dimension

does not increase the violation score of the vertical

dimension. If the violation scores of the vertical edges

do not increase, the proof is complete. Assume w.l.o.g.

the violation score of the left vertical edge {xt, xb}
increases. Also w.l.o.g. assume Bi[f ](xt) > Bi[f ](xb)
(otherwise, we can swap the horizontal edges on our

picture.) Then Bi increases f(xt) and/or decreases

f(xb). Assume w.l.o.g. Bi increases f(xt). (The case

when Bi decreases f(xb) is symmetrical). Then {xt, yt}
is violated with f(xt) < f(yt). Moreover, since f is

a δZ-valued function and 1/δ is an integer, f(yt) ≥
f(xt) + 1 + δ. The application of the basic operator

increases f(xt) by δ and decreases f(yt) by δ.

If the bottom edge is not violated then f(xb) ≥
f(yb) − 1 and the basic operator does not change

f(xb) and f(yb). Since vs({xt, xb}) increases, f(xt) >
f(xb)+1−δ. Integrality of 1/δ implies f(xt) ≥ f(xb)+
1. Combining the three inequalities derived so far, we

get f(yt) ≥ f(xt)+1+δ ≥ f(xb)+2+δ ≥ f(yb)+1+δ.

Thus, vs({xt, xb}) increases by δ, while vs({yt, yb})
decreases by δ, keeping the violation score along the



vertical dimension unchanged.

If the bottom edge is violated then, since vs({xt, xb})
increases and 1/δ is integral, f(xt) ≥ f(xb) + 1 − δ.

Also, f(xb) must decrease, implying f(xb) > f(yb)+1.

Therefore, f(yt) ≥ f(xt) + 1 + δ ≥ f(xb) + 2 >
f(yb) + 3. Recall that δ ≤ 1. Thus, vs({xt, xb})
increases by at most 2δ, while vs({yt, yb}) decreases by

2δ, ensuring that the violation score along the vertical

dimension does not increase.

3.2. Proof of Lemma 3.1

The crux of the proof is showing how to make a

function f : {0, 1}d → δZ Lipschitz by redefining it on

at most 2
δ ·V (f) · ImD(f) points. We apply a sequence

of averaging operators as follows: we define f0 = f
and for all i ∈ [d], let fi = Ai[fi−1].

f = f0
A1−−→ f1

A2−−→ f2 −→ · · · −→ fd−1
Ad−−→ fd.

We claim that fd is Lipschitz. By Definition 3.2, each

step above makes one dimension i free of violated

edges. Recall that the violation score V Si is 0 iff dimen-

sion i has no violated edges. Therefore, by Lemma 3.2,

Ai preserves the Lipschitz property along dimensions

fixed in the previous steps. Thus, eventually there are

no violated edges, and fd is Lipschitz.

Now we bound the number of points on which f and

fd differ, that is, Dist(f, fd). For all i ∈ [d],

Dist(fi−1, fi) = Dist(fi−1, Ai[fi−1]) ≤ 2 · V i(fi−1)

≤ 2

δ
· V Si(fi−1) ≤ 2

δ
· V Si(f) ≤ 2

δ
· V i(f) · ImD(f).

The first inequality holds because Ai modifies f only

on the endpoints of violated edges along dimension i.
The second and the fourth inequality follow from (1).

The third inequality holds because, by Lemma 3.2, the

operators Aj for j �= i do not increase the violation

score in dimension i. By the triangle inequality, the

distance from f to fd is

Dist(f, fd) ≤
∑
i∈[d]

Dist(fi−1, fi)

≤
∑
i∈[d]

2

δ
· V i(f) · ImD(f) =

2

δ
· V (f) · ImD(f). (2)

Consider a function f which is ε-far from the Lips-

chitz property. Since fd is Lipschitz, Dist(f, fd) ≥ ε2d.

Using (2), we get V (f) ≥ εδ·2d−1

ImD(f) , as required.

4. RECONSTRUCTING THE LIPSCHITZ PROPERTY

In this section, we prove Theorems 1.6, giving local

filters of the Lipschitz property for functions f : Ln →
R and f : Hn,d → R. Our filters are deterministic

and nonadaptive. We abstract the combinatorial object

used in these filters as a lookup graph consistent with

the domain graph. We start by defining lookup graphs

in Definition 4.2. In Lemma 4.1, we show how to

use them to construct Lipschitz filters. Finally, we

construct lookup graphs for the line and the hypergrid

in Lemma 4.3. Lemmas 4.1 and 4.3 imply Theorem 1.6.

Definition 4.1 (Out-neighbors, outdegree). Given a
directed graph H = (V,EH) and a node u ∈ V ,
let NH(u) be the set {z ∈ V | (u, z) ∈ EH} of out-
neighbors of u in H . Let N ∗H(u) = NH(u) ∪ {u}. (We
omit the subscript H when the graph is clear from the
context.) We denote the maximum outdegree of a node
in H by outdegree(H).

Definition 4.2 (Lookup graph). Given an undirected
graph G = (V,E), a lookup graph of G is a directed
graph H = (V,EH) satisfying the following properties:
• Consistency: for all x, y ∈ V , some z ∈ N ∗H(x) ∩
N ∗H(y) is on a shortest path between x and y in G.

• (Strict) Containment: (x, y) ∈ EH ⇒ NH(y) ⊂
NH(x).

Lemma 4.1. If a graph G has a lookup graph H
then there is a nonadaptive local Lipschitz filter for
real-valued functions on G with lookup complexity
outdegree(H) and running time O(outdegree(H)).

Proof: We describe a filter which receives a lookup

graph H and f : V (H)→ R as inputs. We assume that

the filter has access to the domain graph G and that

distances in G can be computed in constant time.
We say a function f : D → R is Lipschitz on D′ ⊆ D

if for all pairs (x, y) ∈ D′×D′, the Lipschitz condition

is satisfied, namely, dR(f(x), f(y)) ≤ dD(x, y).

FILTERH(f, x)

1 if N (x) is empty, output g(x) = f(x);
2 for each vertex z in N (x),

recursively compute g(z) = FILTERH(f, z);
3 if setting g(x) = f(x) makes g Lipschitz on N ∗(x)
4 then output g(x) = f(x)
5 else output g(x) = max

z∈N (x)
(g(z)− dG(x, z)).

We proceed to prove correctness of the filter. The

recursion on Line 2 terminates because H satisfies the

containment property and, consequently, the size of the

out-neighbor set decreases strictly with every successive

recursive call.

Claim 4.2. If function f is Lipschitz on N ∗(x) and on
N ∗(y), it is also Lipschitz on {x, y}.

Proof: Let z ∈ N ∗(x) ∩N ∗(y) be a vertex which



lies on a shortest path between x and y in G (guaranteed

to exist by the consistency property of H). From the

statement of the claim, f is Lipschitz on {x, z} and

{y, z}. Since z lies on a shortest path between x and y
in G, function f is Lipschitz on {x, y}.

Using Claim 4.2, it is sufficient to prove that for each

x ∈ V , g is Lipschitz on N ∗(x). The proof is by strong

induction on |N (x)|. The base case (when |N (x)| =
0) holds for trivial reasons. For the inductive case, let

|N (x)| = k > 0. Since each z ∈ N (x) has |N (z)| <
k, we may assume (by the induction hypothesis) g is

Lipschitz on N ∗(z) for all z ∈ N (x). Then Claim 4.2

implies that g is Lipschitz on N (x). The fact that g is

Lipschitz on N ∗(x) then follows from statements on

lines 3 and 4.

On query x, the filter only looks up out-neighbors of

x because of the containment property of H . There-

fore, the lookup complexity of the filter is at most

outdegree(H). Moreover, if the filter stores the value

of g(z) the first time it is computed and reuses it later,

the running time is O(outdegree(H)).

Lemma 4.3 (Lookup graph constructions). The line
graph Ln has a lookup graph H with outdegree(H) =
O(log n). The hypergrid Hn,d has a lookup graph H
with outdegree(H) = (1 + log n)d.

Proof: To construct a lookup graph for the line

Ln, consider a balanced (rooted) binary search tree T
on the set Vn = [n]. Recall that the lowest common

ancestor (LCA) of a pair of vertices x, y in T is a

common ancestor of x and y which is furthest from the

root. We now construct H as follows: For each x ∈ [n],
if w �= x is an ancestor of x in T , we add an edge

(x,w) in H . Now, for distinct x, y ∈ [n], the vertex

LCA(x, y) is common to both out-neighbors of x and

y. Moreover, the binary search tree property implies that

it lies on the shortest path between x and y: for all

x < y, x ≤ LCA(x, y) ≤ y. This verifies that H is

a lookup graph of Ln. From definition of H , it is also

clear that H satisfies the containment property. Finally,

outdegree(H) = O(log n).
To construct a lookup graph for Hn,d, we use a

strong product of lookup graphs for the line; details are

provided in the full version of this paper.

Theorem 1.6 follows from Lemmas 4.1 and 4.3.

5. APPLICATION TO DATA PRIVACY

In Section 5.1, we review differential privacy and

the Laplace mechanism from [11] and describe our

filter mechanism. In Section 5.2, we instantiate the filter

mechanism with the filter from Theorem 1.6 to obtain

a private and efficient algorithm for releasing functions

f of the data when a Lipschitz constant of the function

is provided by a distrusted client.

5.1. Filter Mechanism

There are several ways to model a database. It can

be represented as a vector or a multiset where each

component (or element) represents an individual’s data

and takes values in some fixed universe U . In the latter

case, equivalently, it can be represented by a histogram
– that is, a vector where the ith component represents

the number of times the ith element of U occurs in the

database. Two databases x and y are neighbors if they

differ in one individual’s data. For example, if x and

y are histograms, they are neighbors if they differ by

1 in exactly 1 component. The results of this section

apply to all of these models. Let D denote the set of

all databases x. The notion of neighboring databases

induces a metric dD on D such that dD(x, y) = 1 iff x
and y are neighbors.

Definition 5.1 (Differential privacy, [11]). Fix ε > 0.
A randomized algorithm A is ε-differentially private if
for all neighbors x, y ∈ D, and for all subsets S of
outputs, Pr[A(x) ∈ S] ≤ eε Pr[A(y) ∈ S].

Recall that Lap(λ) denote the Laplace distribution

on R with the scale parameter λ. The Laplace mech-
anism [11] is a randomized algorithm for evaluating

functions on databases privately and efficiently.

Theorem 5.1 (Laplace Mechanism [11]). Fix c, ε > 0.
For all functions f : D → R

t which are c-Lipschitz
on the metric space (D, dD), the following algorithm
(which receives f as an oracle) is ε-differentially pri-
vate: Af

Lap(x) = f(x) + (Y1, . . . , Yt), where Yi
i.i.d.∼

Lap(c/ε) for all i ∈ [t].

Next we prove Theorem 1.7 (from Section 1.2) that

summarizes the performance of our filter mechanism.

Proof of Theorem 1.7: Let x be the input database

and gρ the output function of the local Lipschitz filter A
with random seed fixed to ρ. Since the filter is local, gρ
is well defined on D. In particular, this means that gρ
can be computed by the user without the knowledge

of x and therefore does not disclose anything about

the database x. Moreover, gρ is guaranteed to be 1-

Lipschitz and therefore, c · gρ is c-Lipschitz. The filter

mechanism can thus be seen as an application of the

Laplace mechanism on the c-Lipschitz function c · gρ.

By Theorem 5.1, the algorithm Af
Fil is ε-differentially

private. Since ρ was arbitrary, above analysis holds for

any choice of ρ, i.e., any instantiation of the filter A.

For the second part of the theorem, note that if f is

c-Lipschitz, the function that filter A gets as an input



oracle, 1
c · f , is Lipschitz. Thus, the output function of

the filter is identical to its input function with probability

at least 1− δ. Since the output of the filter is scaled by

c, the second part of the theorem follows.

5.2. Filter Mechanism for Histograms

Theorem 1.7 applies to arbitrary metric spaces

(D, dD). In this section, we instantiate it with the local

Lipschitz filter for functions from the hypergrid to real

numbers, described in Theorem 1.6, and analyze its

performance.

Recall that each individual’s data is an element of

an arbitrary domain U . Suppose that U consists of k
elements, that is, the individuals can have one of k
types. In this section, we model a database x as a

histogram, i.e., a vector in R
k, where the ith component

represents the number of times the ith element of U
occurs in the database. Consider the set of databases

which contain at most m individuals of each type. The

corresponding set of histograms is D = {0, ...,m}k.

Recall that two histograms are neighbors if they differ

by 1 in exactly one of the components. In this case,

we can identify the metric space (D, dD) with the

hypergrid Hm+1,k (with the convention that vertices are

vectors with entries in {0, ...,m} instead of [m + 1]).
Therefore, we can use our local Lipschitz filter from

Theorem 1.6 in the filter mechanism to release functions

f : D → R. The performance of the resulting algorithm

is summarized in Corollary 5.2. We also bound the

error of the mechanism. Given a function f : D → R

and a (randomized) mechanism A for evaluating f , let

E(f,A) = supx∈D E[|A(x)− f(x)|] be the error of the

mechanism A in computing f .

Corollary 5.2 (Filter mechanism for histograms). Fix
c, ε > 0. For all functions f : D → R, the filter
mechanism of Theorem 1.7 instantiated with the local
filter of Theorem 1.6 is ε-differentially private and
its running time is bounded by (log(m + 1) + 1)k

evaluations of f . In addition, for c-Lipschitz functions f
on D, the error of the mechanism, E(f,AFil) is O(c/ε).

The proof of the corollary appears in the full version.
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